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We study the dynamics of priority-queue networks, generalizations of the binary interacting priority-queue
model introduced by Oliveira and Vazquez �Physica A 388, 187 �2009��. We found that the original AND-type
protocol for interacting tasks is not scalable for the queue networks with loops because the dynamics becomes
frozen due to the priority conflicts. We then consider a scalable interaction protocol, an OR-type one, and
examine the effects of the network topology and the number of queues on the waiting time distributions of the
priority-queue networks, finding that they exhibit power-law tails in all cases considered, yet with model-
dependent power-law exponents. We also show that the synchronicity in task executions, giving rise to priority
conflicts in the priority-queue networks, is a relevant factor in the queue dynamics that can change the
power-law exponent of the waiting time distribution.
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I. INTRODUCTION

In the last century, queueing theory has proved useful for
various problems ranging from operation research to tele-
communications �1�. There is a recent resurgence of interest
for the queueing theory among the statistical physics com-
munity with the application to the problems in human dy-
namics. Specifically, various queueing models based on the
prioritization of tasks, or the priority-queue models to be
short, have been introduced to account for the heavy-tailed
distributions observed in the waiting time and response time
distributions �2–8�. The priority-queue model is grounded on
the assumption that the human dynamics is the result of an
inherent decision-making process of the individual, with im-
plicit priorities assigned for every task in his/her task queue,
according to which he/she decides which task to execute
next.

To be specific, the priority-queue model by Barabási �2�
consists of a single fixed-length queue, filled with tasks each
of which is assigned a priority value drawn randomly when it
enters into the queue. Every step the task with the highest
priority is executed and is replaced by a new task with ran-
dom priority value. Upon execution, the waiting time �, that
is, how long the task has sat �waited� on the queue, is mea-
sured. Waiting time distribution P��� of the Barabási model
�2� has been shown to exhibit a power-law tail for large � as

P��� � �−�, �1�

with the exponent �=1 �2,3�, conforming to the behaviors
observed for the electronic mail, library loan, and website
visitation records �2,9–11�. Besides the human dynamics,
however, due to the extremal nature of its dynamics the
priority-queue model would bear implications also to dispar-
ate problems in extremal dynamics, such as the Bak-Sneppen
model �12� for biological evolution and invasion percolation
�4�.

Barabási model �2� purposefully simplified many aspects
of potential importance in realistic human dynamics, serving

as a starting framework on which various detailed factors can
be embedded �13–17�. One important factor that was not
been accounted for is the human interaction. In the modern
society, human engages in a large array of interactions with
other individuals in various modes. As a result, typical activ-
ity of a person is not an outcome of completely autonomous
decisions but of delicate compromises and balanced conflicts
between often competing priorities. The impact of such a
human interaction on the patterns of human dynamics, the
waiting time distributions in particular, has been addressed
recently by Oliveira and Vazquez �OV� �17�. They intro-
duced a minimal model consisting of two interacting priority
queues with interacting �I� and noninteracting �O� tasks. The
human interaction is taken into account in a way that the I
task is executed only when both of the individuals choose to
execute them, that is, an AND-type protocol for the execu-
tion of I task. Through this model they showed that the
power-law waiting time distribution still persists against the
introduction of human interaction, but it has an effect that the
power-law exponent � of P��� can take numerable values
other than 1 depending on the queue length.

Yet, the effect of human interactions for a system of more
than two queues, or the queue network in general, has not
been fully addressed. Such a question should be highly
meaningful given the increasingly active engagement in vari-
ous social networking of individuals forming complex net-
work structures �18–20�. In this regard, here we study the
dynamics of priority-queue network by generalizing the OV
model. Specifically we focus on the scalability of the inter-
action protocols and the waiting time distribution under vari-
ous model settings such as the number of queues �network
size� and interaction topology.

II. PRIORITY-QUEUE NETWORK

To construct a priority-queue network of N queues, we
follow the OV model to divide the tasks into two classes: I
and O tasks. A queue has one I task for each neighbor in the
network in addition to an O task. Thus a queue node i with
degree ki �degree is the number of links connected to the
node� has a queue with fixed length Li=ki+1. We denote the*kgoh@korea.ac.kr
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I task of the node i paired with the node j as Iij and the O
task of the node i as Oi. Given the network configuration and
the queue discipline such as the interaction �e.g., AND or OR
type� and update protocols �e.g., parallel or sequential�, a
priority-queue network is specified. Initially each task is
given a priority value drawn from a uniform distribution in
�0,1�. Then in each step, each node chooses its highest pri-
ority task. The execution of the selected tasks is determined
by the queue discipline: in the AND-type protocol, random
sequential update case �the OV model�, for example, we
choose a random node, say i. If the highest priority task of i
is Oi, then it is executed. If it is an I task, say Iij, it is
executed only if Iji is also the highest priority task of the
conjugate node j. Otherwise, node i executes Oi instead. The
waiting times of the executed tasks are recorded, and the
executed tasks are replaced with new tasks each with a ran-
dom priority value in uniform �0,1�. N such updates consti-
tute a Monte Carlo step �MCS�, which is the time unit of
waiting time measurement.

III. OV MODEL ON NETWORKS

We first consider the generalization of the OV model for
N�2 queues. We consider the model on two representative
network configurations, the star graph and fully connected
network, for various N. The resulting waiting time dynamics
reveal an important phenomenon, the dynamic freezing due
to priority conflict. The priority conflict occurs when a node
i has Iij as highest priority task, but the node j has another,
say Ijk, as its highest priority, in conflict with each other.

The star topology is less vulnerable to such a dynamic
freezing since leaf nodes can resolve it primarily by updating
priority of the O task repeatedly. As a result, we have a

power-law decaying P��� �Figs. 1�a� and 1�b��. The power-
law exponent � is found to be independent of the network
size N; for the I tasks �I�2 and for the O tasks �O�3,
irrespective of being hub or leaf nodes. This result is consis-
tent with the OV model with L=2, so on top of star graph, it
behaves essentially the same as in the binary OV model.

On the other hand, the dynamics is quite different in loopy
networks such as the fully connected networks, which are
highly susceptible to conflicts that cannot be resolved
readily. As a consequence, the number of executed I tasks,
��t�, decays rapidly in time either algebraically for small N
or exponentially for large N�10 �Figs. 1�c� and 1�d��, and
eventually the dynamics gets frozen, with the time scale de-
creasing with N. In real social networks, we have strong
empirical evidences of high propensity of transitive triad re-
lations �cyclic interactions between three individuals� �20,21�
and clique �fully connected subgraph� structure �20,22�, so
the AND-type interaction protocol would strongly suffer the
dynamic freezing, rendering itself unrealistic toward realistic
modeling of the network effects in human dynamics.

IV. PRIORITY-QUEUE NETWORK WITH OR-TYPE
PROTOCOL: THE OR MODEL

Not all human I tasks should follow the AND-type proto-
col. As an alternative, an OR-type protocol would be more
reasonable for the tasks which require simultaneous actions
of two or more individuals but the action can be initiated
primarily by either of them, such as the phone call conver-
sation �23� and the instant messaging �24�. For such class of
I tasks, the potential priority conflict can be instantly over-
ridden; we normally just answer the incoming phone call, for
example. To model such situations, we introduce the priority-
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FIG. 1. �Color online� ��a� and �b�� The wait-
ing time distribution P��� of the OV model on
star networks �a� for I tasks and �b� for O tasks,
with various N=3,4 ,5 ,20. Both P��� decay with
an asymptotic power law with N-independent ex-
ponent, �a� �I�1.9 and �b� �O�2.8, indicated
with dotted lines. Deviations from the power law
for large � for large N are due to the finite simu-
lation time �1010 steps�. ��c� and �d�� The �c�
double logarithmic and �d� semilogarithmic plots
of the number of executed I tasks, ��t�, for the
OV model on fully connected networks starting
from random initial priority assignments versus
time. Different dotted line patterns are used for
different network size N �see legend�. �c� For
small N, ��t� decays algebraically with
N-dependent exponent, �d� while it decays expo-
nentially for large N�10. Indicated slopes of
dotted line are 1.5, 2.5, and 3.5, from right to left,
drawn for the eyes. Also shown is ��t� for N
=20 with the star graph topology �black solid� for
comparison.

MIN, GOH, AND KIM PHYSICAL REVIEW E 79, 056110 �2009�

056110-2



queue network with the OR-type interaction protocol by
modifying the OV model as follows: �a� Each step we choose
a random node, say node i. �b� If its highest priority task is
an I task, say Iij, the two tasks Iij and Iji are executed regard-
less of the priority value of Iji; if Oi is the highest priority
task, only that is executed. �c� Priorities of all the executed
tasks are randomly reassigned. We refer this model to as the
OR model hereafter.

For the OR model, P��� still exhibit power-law tails for
both star and fully connected network topologies, yet the
power-law exponent � depends on the network size N as
well as the network topology in a diverse way. First, in the
star topology, � decreases as N increases: for I tasks, it ex-
hibits values from �I�3 for N=3 to �I�1.5 for N=20 �Fig.
2�a��; for O tasks, the exponent exhibits distinct values for
the hub and leaf nodes, changing from �O,hub�1.5 for N
=3 to �O,hub�1.0 for N=20 for the hub node, whereas for
the leaf nodes it changes from �O,leaf �2.0 for N=3 to
�O,leaf �1.5 for N=20 �Fig. 2�b��. Moreover, for the hub
node, the mean waiting time ���O,hub of O tasks diverges with
the exponent ��2, similarly to the Poisson queue placed on
the hubs in scale-free networks �25�. For other tasks, P���
with ��2 for large N is accompanied by the peak at �=1,
rendering the average waiting time finite.

In the fully connected topology, the power-law exponent
� weakly depends on N. For the I tasks, it decreases with N
from �I�3 for N=3 to �I�2 for N=20 �Fig. 2�c��. For the
O tasks, on the other hand, �O is rather stable against N as
�O�1.5 �Fig. 2�d��. This result implies that on the fully
connected networks, I tasks are executed with finite mean
waiting times while O tasks on average have to wait on the
queue infinitely long to be executed. Taken together, the OR
model on networks implicates the importance of not only the

overall network structure but also individual node’s topologi-
cal position on determining the dynamics of networking
priority-queue nodes.

V. PRIORITY-QUEUE NETWORK WITH PARALLEL
UPDATES

Update rule in discrete time dynamic models has been
known to affect the dynamics considerably �26�. Thus it is
informative to study the effect of update rule in priority-
queue models. To this end, we consider the parallel update
rule by modifying the OR model as follows: �a� Each step,
each node chooses its highest priority task. �b� We sort all
chosen tasks by the priority values and execute them in order
of priority, while each node can execute at most one task in
each step. That is, if the priority of Iij is higher than that of
Ijk, then the node j executes the task Iji upon request from i
before Ijk, which subsequently cannot be executed in this
step. �c� All the executed tasks are assigned new random
priorities, completing a MCS. Priority conflict may occur at
step �a�, but it is not as problematic as in the AND-type
protocol case even in the fully connected topology due to the
partial resolution in �b�. We found, however, that it is strong
enough to affect the waiting dynamics of the priority-queue
network: it can reshape P��� in a significant way because the
tasks in the tail ���1� are particularly strongly affected.

The waiting time distribution P��� of the OR model with
parallel update unanimously exhibits a probability weight
strongly concentrated at �=1 followed by an asymptotic al-
gebraic tail �Fig. 3�. On the star graph topology, the decay
exponent � shows less variation compared to the sequential
update case: it changes from �I�2.2 for N=3 to �I�1.7 for
N=20 for the I tasks �Fig. 3�a��. For the O tasks, it is insen-
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FIG. 2. �Color online� ��a� and �b�� The wait-
ing time distribution P��� of the OR model on
star topology with N=3,4 ,5 ,20. �a� P��� for I
tasks decay as power laws asymptotically and the
power-law exponent decreases as N from �I�3
for N=3 to �I�1.5 for N=20. �b� P��� for O
tasks show distinct behaviors between the hub
node �open symbols� and leaf nodes �full sym-
bols�. For the hub node, the power-law exponent
varies from �O,hub�1.5 for N=3 to ��1 for N
=20. For the leaf nodes, P��� decays faster, with
exponents ranging from �O,leaf �2 for N=3 to
�O,leaf �1.5 for N=20. For I task and leaf nodes’
O task, we shifted P��� curve vertically to en-
hance visibility. ��c� and �d�� P��� of the OR
model on fully connected topology. �c� P��� for I
tasks decay with asymptotic powers, with expo-
nents decreasing with N from �I�3 for N=3 to
�I�2 for N=20. �d� P��� for O tasks follow the
power-law decay with N-insensitive exponent
�O�1.5. Deviations for large � are due to finite
simulation time. All quoted slopes are indicated
with dotted lines drawn for the eyes.
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sitive to N, yet exhibits different values for the hub and leaf
nodes, as �O,hub�1.5 and �O,leaf �2.5, respectively �Fig.
3�b��, decaying faster than the sequential case. For the fully
connected networks, the power-law decay exponent for the
I tasks is �I�2, insensitive to N �Fig. 3�c��, while for the
O tasks, it even increases with N from �O�2 for N=3 to
�O�3 for N=20 �Fig. 3�d��. The presence of strong peak at
�=1 renders the mean waiting time of all tasks finite, which
is due to the partial resolution rule we implemented in the
model. These results demonstrate clearly that the update rule
in the priority-queue network strongly affects the overall dy-
namics in a nontrivial way.

VI. SUMMARY AND DISCUSSION

In this paper, we have generalized the binary interacting
priority-queue model, the OV model, into a queue network,
showing that the OV model is not easily generalizable onto
loopy networks as the dynamics gets frozen due to substan-
tial priority conflicts. We then introduced a modified model,
the OR model, which can be put on top of any network
topology. It is shown that OR model exhibits power-law de-
caying waiting time distribution P��� �Eq. �1��, yet with di-
verse values of the exponent � depending on the global net-
work topology, local position of queue nodes on the network,
as well as the queue discipline such as the update rule.

The fundamental factor driving the diverse behaviors of
the interacting priority-queue models is the existence of pri-
ority conflicts. Different global network topology and dis-
tinct network position of nodes impose different degrees of
conflicts and the resolution thereof. In the perspective of hu-
man dynamics modeling, its introduction seems reasonable,
for such conflicts are more of a rule than an exception in
daily decision making of modern human life. A crucial ques-
tion remains at this point. The dependence of waiting time
dynamics of a priority-queue node �a human� on the global
or local network topology that we found in this work has
never been gauged from the empirical data yet. Candidate
data sets for this end would be the mobile phone data �23� or
the instant-messaging data �24�, for which power-law-like
waiting time distributions have been reported. The waiting
time � in this work is measured for each task, which is for
each link, differently from what have been previously mea-
sured from data in Refs. �23,24�, so a direct comparison can-
not be made. Appropriate measurements with these data sets
would reveal the relevance of the priority-queue network
models studied in this work and the role of interactions in
human dynamics in general.
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FIG. 3. �Color online� The waiting time dis-
tribution P��� of the OR model with parallel up-
dates. ��a� and �b�� P��� of the parallel OR model
on star topology for �a� the I tasks and �b� the O
tasks. For I tasks, the power-law decay of P���
exhibits a weak N dependence as the exponent
varies from �I�2.2 for N=3 to �I�1.7 for N
=20. For O tasks, hub and leaf nodes exhibit dif-
ferent N-insensitive power laws with �I,hub�1.5
for the hub and �I,leaf �2.5 for the leaf nodes.
��c� and �d�� P��� of the parallel OR model on
fully connected topology. For I tasks the power-
law exponent is found to be insensitive to N as
�I�2 �c�. For O tasks, however, the asymptotic
power-law exponent increases with N from �O

�2 for N=3 to �O�3 for N=20. In �d�, the P���
curves for different N are shifted vertically to en-
hance comprehensibility. All quoted slopes are
indicated with dotted lines drawn for the eye.
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